مفهوم كلی نانو تكنولوژی چيست و چه كاربردي دارد ؟

آبان ۱۸, ۱۳۸۷ توسط :   موضوع : اخبار علمی پزشکی, اخبار علوم پايه

ساختار و مفاهیم كلی نانو تكنولوژی
یكی از پیشوندهای مقیاس اندازه گیری در سیستم SI نانو به معنی یك میلیاردم واحد آن مقیاس است.برای مثال یك نانومتر معادل یك میلیاردم متر است. با توجه به اینكه یك سلول بدن بیش از صدها نانومتر است می توان به كوچكی این مقیاس پی برد. از آنجایی كه علوم نانو بخش وسیعی برگرفته از مباحث شیمی، فیزیك، بیولوژی، پزشكی، مهندسی و الكترونیك را در بر می گیرد،‌گروه بندی آن بسیار پیچیده است.

یكی از پیشوندهای مقیاس اندازه گیری در سیستم SI نانو به معنی یك میلیاردم واحد آن مقیاس است.برای مثال یك نانومتر معادل یك میلیاردم متر است. با توجه به اینكه یك سلول بدن بیش از صدها نانومتر است می توان به كوچكی این مقیاس پی برد. از آنجایی كه علوم نانو بخش وسیعی برگرفته از مباحث شیمی، فیزیك، بیولوژی، پزشكی، مهندسی و الكترونیك را در بر می گیرد،‌گروه بندی آن بسیار پیچیده است.

دانشمندان، علوم نانو را به چهار گروه شامل مواد (گروه اول)، مقیاسها (گروه دوم)، تكنولوژی الكترونیك، اپتوالكترونیك، اطلاعات و ارتباطات (گروه سوم) و بیولوژی و پزشكی (گروه چهارم) طبقه بندی كرده اند. این طبقه بندی باعث سهولت در بررسی این علوم شده است البته تداخل برخی از بخش ها در یكدیگر طبیعی است. برنامه های توسعه این تكنولوژی به سه بخش كوتاه مدت (كمتر از پنج سال)، میان مدت( بین۱۵-۵ سال) و بلند مدت (بیش از۲۰ سال) تقسیم بندی شده است. مواد نانو (nanomaterials) قابلیت كنترل ساختار تشكیل دهنده مواد پیشرفته (از فولادهای ساخته شده در اوایل قرن۱۹ تا انواع بسیار پیشرفته امروزی) در ابعاد كوچك و كوچكتر،‌ در اندازه های میكرو و نانو بوده است.

هر قدر بتوانیم این مواد را در ابعاد ریزتر و كنترل شده ای تولید كنیم خواهیم توانست مواد جدیدی را با قابلیت و عملكردهای بسیار عالی به دست آوریم. تاكنون تعاریف متعددی از مواد نانو ارائه شده است اما در یك تعریف جامع می توان گفت موادی در این گروه قرار می گیرند كه یكی از ابعاد اضلاع آنها از۱۰۰ نانومتر كوچكتر باشد.

یكی از این گروهها »لایه ها« است. لایه ها یك بعدی هستند كه در دو بُعد دیگر توسعه می یابند مانند فیلم های نازك و پوششها.

برخی از قطعات كامپیوتر جزو این گروه هستند. گروه بعدی شامل موادی است كه دارای دو بعد هستند و در یك بعد دیگر گسترش می یابند و شامل لوله ها و سیمها می شوند. گروه مواد سه بعدی در نانو شامل ذرات، نقطه های كوانتمی (ذرات كوچك مواد نیمه هادیها) و نظایر آنها می شوند. دو ویژگی مهم، مواد نانو را از دیگر گروهها متمایز می سازد كه عبارتند از افزایش سطح مواد و تاثیرات كوانتمی.

این عوامل می توانند باعث ایجاد تغییرات و یا به وجود آمدن خواص ویژه ای مانند تاثیر در واكنشها، مقاومت مكانیكی و مشخصه های ویژه الكتریكی در مواد نانو شوند. همانگونه كه اندازه این مواد كاهش می یابد، تعداد بیشتری از اتمها در سطح قرار خواهند گرفت. برای مثال، اتم های موادی به اندازه۳۰ نانومتر به میزان۵ درصد،۱۰ نانومتر به میزان۲۰ درصد و۳ نانومتر به میزان۵۰ درصد در سطح قرار دارند.

در نتیجه مواد نانو با ذرات كوچكتر در مقایسه با مواد نانو با ذرات بزرگتر دارای سطح بیشتری در واحد جرم هستند. با توجه به ازدیاد سطح در این مواد، تماس ماده با سایر عناصر بیشتر شده و موجب افزایش واكنش با آنها می شود.

این عمل منجر به تغییرات عمده در شرایط مكانیكی و الكترونیكی این مواد خواهد شد. برای مثال سطوح بین ذرات كریستالها در بیشتر فلزات باعث تحمل فشارهای مكانیكی بر آن می شود.

اگر این فلزات در مقیاس نانو ساخته شوند، با توجه به ازدیاد سطح بین كریستالها، مقاومت مكانیكی آن به شدت افزایش می یابد. برای مثال فلز نیكل در مقیاس نانو مقاومتی بیشتر از فولاد سخت شده دارد. به موازات تاثیرات ازدیاد سطح، اثرات كوانتمی با كاهش اندازه مواد (به مقیاس نانو) موجب تغییر در خواص این مواد می شود (تغییر در خواص بصری، الكتریكی و جاذبه). موادی كه تحت تاثیر این تغییرات قرار می گیرند ذرات كوانتمی، لیزرهای كوانتمی برای الكترونیك بصری هستند. همانگونه كه بیش از این گفته شد مواد نانو، به سه گروه یك، دو و سه بُعدی طبقه بندی شده اند. مواد نانوی یك بعدی: این مواد شامل فیلم های بسیار نازك و سطوح مهندسی است و در ساخت ابزار الكتریكی و شیمیایی و مدارهای الكترونیكی ساده و مركب كاربرد وسیعی دارند.

امروزه كنترل ضخامت لایه ها تا اندازه یك اتم صورت می پذیرد و ساختار این لایه ها حتی در مواد پیچیده ای مانند روانكارها شناخته شده است.

لایه های مونو كه قطر آنها به اندازه یك ملكول و یا یك اتم است، در علوم شیمی كاربرد وسیعی دارند. یكی از كاربردهای این لایه ها ساخت سطوحی است كه خود را بازسازی كنند. مواد نانوی دوبعدی: به تازگی كاربرد مواد نانوی دو بعدی در تولید سیم و لوله ها افزایش یافته و توجه دانشمندان را به دلیل وجود خواص ویژه مكانیكی و الكترونیكی به خود جلب كرده است. در زیر به چند نمونه ساخته شده در این گروه اشاره می شود.

 نانو لوله های كربنی، CNTs : از رول كردن ورقهای گرافیتی یك یا چند لایه ساخته شده و قطر آنها چند نانو و طولشان چند میكرومتر است.ساختار مكانیكی این مواد مانند الماس بسیار سخت است اما در محورهای خود نرم و تاشو هستند.همچنین این مواد هادی الكتریكی بسیار عالی هستند. نوع غیر عالی نانو لوله های كربنی مانند مولیبید یوم دی سولفاید پس از CNTs ساخته شده است.

این مواد دارای ویژگی های منحصر به فردی همچون روانكاری، مقاومت در برابر ضربات امواج شوكها، واكنشهای كاتالیزی و ظرفیت بالا در ذخیره هیدروژن و لیتیم هستند. لوله های مواد پایه اكسیدی مانند اكسید تیتانیم، برای كاربردهای كاتالیزی، كاتالیزرهای نوری و ذخیره انرژی به صورت تجاری به بازار عرضه شده اند.

نانو سیمها: این سیمها از قرار گرفتن ذرات بسیار ریز از مواد مختلف به صورت خطی ساخته می شوند. نانوسیمهای نیمه هادی از سیلیكون، نیترات گالیم و فسفات ایندیوم ساخته شده و دارای قابلیتهای بسیار خوب نوری، الكتریكی و مغناطیسی است و نوع سیلیكونی این سیمها می تواند بخوبی در یك شعاع بسیار كوچك بدون آسیب رسانی به ساختار سیم خم شود.

این سیمها برای ثبت مغناطیسی اطلاعات در حافظه كامپیوترها، وسایل نانوالكترونیكی و نوری و اتصال مكانیكی ذرات كوانتمی به كار می روند. بیوپلیمرها: انواع گوناگون بیوپلیمرها، مانند ملكولهای DNA ، در خودسازی نانوسیمها در تولید مواد بسیار پیچیده به كار می روند. همچنین این مواد دارای قابلیت اتصال نانو و بیوتكنولوژی برای ساخت سنسور و موتورهای كوچك هستند.

مواد نانوی سه بعدی: این مواد به آن گروه تعلق دارد كه قطری كمتر از۱۰۰ نانومتر داشته باشند. مواد نانوی سه بعدی در اندازه های بزرگتر ساختار متفاوتی داشته و طیف وسیعی از مواد را در جهان تشكیل می دهند و صدها سال است كه به صورت طبیعی در زمین یافت می شوند. مواد تولید شده از عوامل فتوشیمیایی، فعالیت های آتش فشانها، مواد محترق از پختن غذا، مواد متصاعد از احتراق سوخت ماشین ها و مواد آلاینده تولید شده در صنایع جزو این گروه از مواد هستند.

این مواد به علت رفتار متفاوت در واكنش های شیمیایی و بصری بسیار مورد توجه قرار دارند. برای مثال اكسید تیتانیوم و روی كه بصورت شفاف و فرانما، جاذب و منعكس كننده نور ماورای بنفش در صفحات خورشیدی به كار می روند در ابعاد نانو هستند. این مواد كاربردهای بسیار ویژه ای در ساخت رنگها و داروها (به ویژه داروهایی كه تجویز آنها فقط برای یك عضو مشخص بدن و بدون تاثیر بر سایر اعضاست) دارند.

مواد نانوی سه بُعدی شامل مواد بسیاری می شود كه به چند نمونه از آنها اشاره می كنیم. كربن۶۰ (فوله رنس Fullerenes) : در اوایل سال۱۹۸۰ گروه جدیدی از تركیبات كربنی بنام كربن۶۰، ساخته شد. كربن۶۰ ، كروی شكل، به قطر۱ نانومتر و شامل۶۰ اتم كربن است كه به علت شباهت ساختار مولكولی آن با گنبدهای كروی ساخته شده توسط مهندس معماری بنام بوخ مینستر فولر بنام »فوله رنس« نامگذاری شد. در سال۱۹۹۰ ، روش های ساخت كوانتم های كربن۶۰ با مقاومت حرارتی میله های گرافیتی در محیط هلیم بدست آمد. این ماده در ساخت بلبرینگ های مینیاتوری و مدارهای الكترونیكی كاربرد وسیعی دارند.

دِن دریمرز (Dendrimers) : دن دریمرز از یك ملكول پلیمر كروی تشكیل شده و با یك روش سلسله مراتبی خود سازی تولید می شوند. انواع گوناگونی از این مواد به اندازه های چند نانومتر وجود دارند. دن دریمرز در ساخت پوششها، جوهر و حمل دارو به بدن كاربرد فراوانی دارند. همچنین در تصفیه خانه ها به منظور بدام انداختن یونهای فلزات كه می توان به وسیله فیلترهای مخصوص از آب جدا شوند از این مواد استفاده می شود.

ذرات كوانتمی: مطالعات در مورد ذرات كوانتمی در سال۱۹۷۰ شروع شد و در سال۱۹۸۰ این گروه از مواد نانوی نیمه هادی ساخته شدند. اگر ذرات این نیمه هادی ها به اندازه كافی كوچك شوند، تاثیرات كوانتمی ظاهر شده و می توانند میزان انرژی الكترونها و حفره ها را كاهش دهند. از آنجایی كه انرژی با طول موج ارتباط مستقیم دارد در نتیجه خواص نوری مواد بصورت بسیار حساس قابل تنظیم خواهد شد و می توان با كنترل ذرات، جذب یا دفع طول موج خاص در یك ماده را امكان پذیر ساخت.

به تازگی با ردگیری مولكولهای بیولوژی با كنترل سطح انرژی این ماده، كاربردهای جدیدی از آن كشف شده است. در حال حاضر استفاده از مواد نانو رو به افزایش است و به علت خواص بسیار ویژه آنها، تحقیقات در یافتن مواد جدید همچون گذشته ادامه دارد.

كاربردهاي نانوتكنولو‍ژي در كشاورزي و علوم دامي

خلاصه:نانوتكنولوژي به عنوان يك فناوري قدرتمند، توانايي ايجاد تحول در سيستم كشاورزي و صنايع غذايي آمريكا و سر تاسر دنيا را دارد. نمونه هايي از كاربردها و پتانسيلهاي بالقوه نانوتكنولوژي در كشاورزي و صنايع غذايي، شامل سيستم هاي جديد آزاد كننده دارو براي درمان بيماريها، ابزارهاي جديد بيولوژي سلولي و مولكولي، امنيت زيستي و تضمين سلامتي محصولات كشاورزي و غذايي و توليد مواد جديد مورد استفاده براي شناسايي عوامل بيماريزا و حمايت از محيط زيست مي باشد.

تحقيقات اخير، امكان استفاده از نانوشلها و نانوتيوپها را در سيستمهاي جانوري براي تخريب سلولهاي هدف، به روشني ثابت نموده است. امروزه از نانوپارتيكل ها كه اجرام بسيار كوچكتر از حد ميكرون هستند، براي رها سازي داروها و يا ژنها به داخل سلولها استفاده مي كنند و مورد انتظار است كه اين تكنولوژيها در 10 الي 15 سال آتي مورد بهره برداري كامل قرار گيرد.

با روند رو به رشد تحقيقات اخير، اين پيش بيني منطقي است كه در دهه آينده، صنعت نانوتكنولوژي با توسعه بي نظير خود، منجر به ايجاد انقلاب عظيم در بخش پزشكي و بهداشت و همچنين توليدات دارويي دام و آبزيان گردد.كلمات كليدي: سيستمهاي آزاد كننده دارو، نانوپارتيكل، نانوتكنولوژي، شناسايي اجرام بيماري زا
مقدمه:

نانوتكنولوژي به عنوان يك فناوري قدرتمند نوين، توانايي ايجاد انقلاب و تحولات عظيم را در سيستم تامين مواد غذايي و كشاورزي ايالت متحده آمريكا و در گستره جهاني دارد. نانوتكنولوژي قادر است كه ابزارهاي جديدي را براي استفاده در بيولوژي مولكولي و سلولي و همچنين توليد مواد جديدي، براي شناسايي اجرام بيماري زا معرفي نمايد و بنابراين چندين ديدگاه مختلف در نانوتكنولوژي وجود دارد كه مي تواند در علوم كشاورزي و صنايع غذايي، كاربرد داشته باشد. به عنوان مثال امنيت زيستي توليدات كشاورزي و مواد غذايي، سيستمهاي آزاد كننده دارو بر عليه بيماريهاي شايع، حفظ سلامتي و حمايت از محيط زيست از جمله كاربردهاي اين علم مي باشد.علم نانوتكنولوژي چيست؟

انجمن ملي نوبنياد نانوتكنولوژي كه يك نهاد دولتي در كشور امريكا مي باشد ، واژه نانوتكنولوژي را چنين توصيف مي كند: “تحقيق و توسعه هدفمند، براي درك و دستكاري و اندازه گيريها مورد نياز در سطح موادي با ابعاد در حد اتم”، مولكول و سوپرمولكولها را نانوتكنولوژي مي گويند. اين مفهوم با واحدهايي از يك تا صد نانومتر، همبستگي دارد. دراين مقياس خصوصيات فيزيكي، بيولوژيكي و شيميايي مواد تفاوت اساسي با يكديگر دارند و غالبا اعمال غير قابل انتظار از آنها مشاهده مي شود.

در سيستم كشاورزي امروزي، اگردامي مبتلا به يك بيماري خاص شود، مي توان چند روز و حتي چند هفته يا چند ماه قبل علائم نامحسوس بيماري را شناسايي كنند و قبل از انتشار و مرگ و مير كل گله، دامدار را براي اخذ تصميمات مديريتي و پيشگيري كننده آگاه كند و بنابراين مي توان نسبت به مقابله با آن بيماري اقدام نمايد. نانوتكنولوژي به موضوعاتي در مقياس هم اندازه با ويروسها و ساير عوامل بيماري زا مي پردازد و بنابراين پتانسيل بالايي را براي شناسايي و ريشه كني عوامل بيماري زا دارد. نانوتكنولوژي امكان استفاده از سيستمهاي آزاد كننده داروئي را كه بتواند به طور طولاني مدت فعال باقي بماند، فراهم مي كند.

به عنوان مثال استفاده از سيستمهاي آزاد كننده دارو، مي توان به ايمپلنتهاي ابداع شده مينياتوري در حيوان اشاره كرد كه نمونه هاي بزاقي را به طور مستمر كنترل مي كنند و قبل از بروز علائم باليني و تب، از طريق سيستمهاي هشدار دهنده وسنسورهاي ويژه، مي تواند احتمال وقوع بيماري را مشخص و سيستم خاص ازاد كننده دارو معيني را براي درمان موثر توصيه كنند.

طراحي سيستمهاي آزاد كننده مواد دارويي، يك آرزوي و روياي هميشگي محققان براي سيستمهاي رها كننده داروها، مواد مغذي و پروبيوتيكها بوده و مي باشد. نانوتكنولوژي به عنوان يك فناوري قدرتمند به ما اجازه مي دهد كه نگرشي در سطح مولكولي و اتمي داشته و قادر باشيم كه ساختارهايي در ابعاد نانومتر را بيافرينيم.

براي تعيين و شناسايي بسيار جزئي آلودگيهاي شيميايي، ويروسي يا باكتريايي در كشاورزي و صنايع غذايي معمولا از روشهاي بيولوژيكي، فيزيكي و شيميايي استفاده مي گيرد. در روشهاي اخير نانوتكنولوژي براي استفاده توام اين روشها، يك سنسور در مقياس نانو طراحي كرده اند در اين سيستم جديد، مواد حاصل از متابوليسم و رشد باكتريها با اين سنسورها تعيين مي گردد. سطوح انتخابي بيولوژيكي، محيطي هايي هستند كه عمده واكنشهاي و فعل و انفعالات بيولوژيكي و شيميايي در آن محيط انجام مي شود.

چنين سطوحي همچنين توانايي افزايش يا كاهش قدرت اتصال ارگانيزمها و ملكولهاي ويژه را دارد. از جنبه هاي كاريردي استفاده از اين سطوح، طراحي سنسورها، كاتاليستها، و توانايي جداسازي يا خالص سازي مخلوطهاي بيومولكولها مي باشد. نانومولكولها موادي هستند كه اخيرا از طريق نانوتكنولوژي به دست آمده اند و يا در طبيعت موجودند و بوسيله اين ساختارها، امكان دستكاريهاي درسطح نانو و تنظيم و كاتاليز واكنشهاي شيميايي وجود دارد.

نانو مواد از اجزاي با سايز بسيار ريز تشكيل شده اند و اجزا تشكيل دهنده چنين ساختارهايي بر خواص مواد حاصل در سطح ماكرو تاثير مي گذارد. ساختارهاي كروي توخالي (buckey balls ) كه با نام ديگر فلورن هم شناخته شده اند، مجموعه از اتمهاي كربن متحدالشكل به صورت كروي هستند كه در چنين ساختاري هر اتم كربن به سه اتم كربن مجاورش متصل شده. دانشمندان اكنون به خوبي مي دانند كه چگونه يك چنين ساختاري را به وجود آورند و كاربردهاي بيولوژيكي آن امروزه كاملا شناخته شده است. از جمله كاربردهاي چنين ساختارهايي براي رها سازي دارو يا مواد راديواكتيو در محلهاي مبتلا به عوامل بيماريزا مي باشد.

ايده استفاده از60 اتم كربن به جاي 80 اتم، ساختارهاي توخالي را براي آزاد سازي دارو فراهم مي كند. هدف از اين كار در نهايت رسيدن به گروهاي قابل انحلال پپتيدها در آب مي باشد كه نتيجتا اين مولكولها به جريان خون راه پيدا مي كنند.

 نانوتيوپها ساختارهاي توخالي ديگري هستند كه از دو طرف باز شده اند و گروههاي اتمي ديگري به آنها اضافه شده اند و يك ساختار شش گوشه را تشكيل مي دهند. نانوتيوپها مي توانند به عنوان يك ورقه گرافيت در نظر گرفته شوند كه به دور يك لوله پيچيده شده اند.كاربرد پلي مرهاي سنتزي در داروسازي پيشرفتهاي چشمگيري داشته است. سبكي، نداشتن آثار جانبي و امكان شكل دهي پلي مرها، كاربرد آنها را در زمينه پزشكي و دامپزشكي افزايش داده است.

در روشهاي دارورساني مدرن، فرآورده شكل دارويي موثر خود را با يك روند مشخص شده قبلي براي مدت زمان معلوم بطور سيستماتيك به عضو هدف آزاد مي كند. پليمرها نه تنها به عنوان منابع ذخيره دارو و غشا و ماتريكس هاي نگهدارنده عمل مي كنند بلكه مي توانند سرعت انحلال آزاد سازي و تعادل دفع و جذب آزاد را در بدن كنترل كنند.دندريمر(پلي مر) يك طبقه جديد از مولكولهاي سه بعدي مصنوعي هستند كه از مسير و راه نانوسنتزي به دست آمده اند كه اين دندريمرها از تواليها و شاخه اي تكراري حاصل آمده اند. ساختار چنين تركبيباتي از يك درجه بالاي تقارن برخوردار است.نقاط كوانتومي، كريستالهايي در مقياس نانومتري هستند كه اساسا در اواسط 1980 براي كاربردهاي اپتوالكترونيك به كاربرده شدند. آنها در طي سنتز شيميايي در مقياس نانو ايجاد مي شوند و از صدها يا هزاران اتم در نهايت يك ماده نيمه هادي معدني تشكيل شده اند كه اين ماده به اتمها خاصيت فلورنس مي دهد.

وقتي يك نقطه كوانتومي با يك پرتو نور برانگيخته مي شود آنها دوباره نور را منتشر مي كنند. ميزان يك طيف نشري متقارن باريك مستقيم به اندازه كريستال بستگي دارد.

اين بدان معني است كه اجرام كوانتومي مي توانند به خوبي براي انتشار نور در طول موجهاي مختلف طراحي شوند. نانوشلها يك نوع جديد از نانوذرات كه از هسته دي الكتريك مانند سيليكا تشكيل شده اند كه با يك لايه فلزي فوق العاده نازك(به عنوان مثال طلا) پوشش داده شده اند. نانوشلهاي طلا، داراي خواص فيزيكي مشابه به آنهايي هستند كه از كلوئيدها طلا ساخته شده اند. پاسخهاي نوري نانوشلهاي طلا به طور قابل توجهي به اندازه نسبي هسته نانوذرات و ضخامت لايه طلا بستگي دارد.

 دانشمندان قادرند نانوشلهايي را بسازند كه ملكولهاي آنتي ژنها بر روي آنها سوار شوند و در مجموع سلولهاي سرطاني و تومورهاي موجود را تحت تاثير قرار دهند. اين ويژگي مخصوصا در رابط با نانوشلها مي باشد كه اين ساختارها قادرند فقط تومورهاي موجود را تحت تاثير قرار دهند و سلولهاي مجاور تومور دست نخورده باقي مي ماند. از طريق حرارتي كه به طور انتخابي در سلولهاي توموري ايجاد مي كند منجر به از بين بردن اين سلولها مي شود.
 

كاربردهاي نانوتكنولوژي در علوم دامي
سلامتي دامهاي اهلي از جمله مسائلي است كه با اقتصاد دامداريها در ارتباط مي باشد. يك دامپزشك مي نويسد كه “علم نانوتكنولوژي توانايي و پتانسيل بالقوه اي بر روي رهيافتهاي آتي دامپزشكي و درمان دامهاي اهلي خواهد داشت”. تامين اقلام غذايي براي دامهاي اهلي همواره با افزايش هزينه و نياز به مراقبتهاي خاص دامپزشكي و تجويز دارو و واكسن همراه بوده است و نانوتكنولوژي توانايي ارائه راهكارهاي مناسب براي حل اين معضلات را دارد.
سيستمهاي سنتيتيك آزاد كننده مواد داروئيامروزه مصرف آنتي بيوتيكها، واكسنها، پروبيوتيكها و عمده داروها از طريق وارد كردن آنها از راه غذا يا آب دامها و يا از راه تزريق عضلاني صورت مي گيرد. رها سازي يك مرحله اي دارو در برابر يك ميكروارگانيزم علارغم تاثيرات درماني و اثرات بازدارنده پيشرفت يك بيماري معمولا با بازگشت مجدد علائم بيماري وتخفيف اثرات دارويي مصرفي همراه است.

روشهاي موجود در سطح نانو، قابليت تشخيص و درمان عفونت،اختلالات تغذيه اي و متابوليكي را دارا مي باشد. سيستمهاي سنتتيك رها سازي دارو مي تواند خواص چند جانبه براي حذف موانع بيولوژيكي در افزايش بازده درماني داروي مورد استفاده و رسيدن آن به بافت هدف داشته باشد كه از جمله اين خواص مي توان به موارد ذيل اشاره كرد.

1- تنظيم زماني مناسب براي آزاد سازي دارو

2- قابليت خود تنظيمي

3- توانايي برنامه ريزي قبليبنابراين در آينده نزديك پيشرفتهاي بيشتر تكنولوژي امكانات زير را فراهم مي كند:1- توسعه سيستمهاي سنتيتيك رها سازي داروها،پروبيوتيكها، مواد مغذي2- افزايش سرعت شناسايي علائم بيماري و كاربرد روشهاي درماني سريع3- توسعه سيستمهاي رها سازي اسيدهاي نوكلئيك و مولكولهاي DNA4- كاربرد نانومولكولها در توليد واكسنهاي داميتشخيص بيماري و درمان دامهاتصور امكان تزريق نانوپارتيكها به دامها و فعال شدن تدريجي ماده موثر همراه با اين نانوذرات در بدن حيوان براي از بين بردن و تخريب سلولهاي سرطاني، افق تحقيقاتي جديدي را به روي محققان بازكرده است.

محققان دانشگاه رايس مراحل مقدماتي كاربرد نانوشلها را براي تزريق به جريان خون ارزيابي كردند. اين ذرات نانو به گيرنده هاي غشاسلولهاي سرطاني متصل مي شوند و با ايجاد امواج مادون قرمز باعث بالا رفتن دماي سلولهاي مذكور به 55 درجه و تركيدن و از بين رفتن تومورهاي موجود مي گردند. همچنين نانوپارتيكهايي كه از اكسيدهاي آهن ساخته مي شوند، با ايجاد امواج مگنتيك در محل استقرار سلولهاي سرطاني باعث از بين بردن اين سلولها مي شوند.

 يكي از اساسي ترين محورهاي تحقيقاتي كنوني، توسعه سيستمهاي رها سازي DNA غيرزنده، با بازدهي مناسب و با حداقل هزينه و عوارض جانبي و سمي مي باشد، كه در ژن درماني مورد استفاده قرار مي گيرند. اصلاح نژاد داممديريت تلاقي و زمان مناسب جفتگيري دامها، از جمله مواردي است كه در مزارع پرورش گاوشيرده به هزينه و زمان طولاني نياز دارد. از راهكارهايي كه اخير مورد استفاده قرار گرفته است، استفاده از نانوتيوپها خاص در داخل پوست مي باشد كه زمان واقعي پيك هورمون استروژن و وقوع فحلي را دار دامها نشان مي دهد و لذا با علائمي كه سنسورهاي موجود به دستگاه مونيتور مي فرستد، زمان دقيق و واقعي تلقيح را به دامدار نشان مي دهد.

استفاده از نانوتكنولوژي در فراوري مواد معدني

مقدمه
امروزه فناوري نانو به عنوان يك چالش اصلي علمي و صنعتي پيش روي جهانيان است. در سال هاي اخير مشخصات سايز محصولات براي مواد پيشرفته به شكل بسيار چشمگيري ريز شده است كه در بعضي اوقات به محدوده نانو سايز مي رسد لذا استفاده از نانوتكنولوژي در رسيدن به اين هدف بسيار مفيد و كارا خواهد بود.

در نانوتكنولوژي شما قادر به ايجاد ساختارهايي از مواد خواهيد بود كه در طبيعت موجود نبوده و شيمي مرسوم نيز قادر به ايجاد آن مي باشد. برخي از مزاياي اين فناوري را مي توان توليد مواد قوي تر، قابل برنامه ريزي و كاهش هزينه هاي فعاليت برشمرد. تعريف نانوفناوري بر اساس برنامه پيشگامي ملي آمريكا (يك برنامه تحقيق و توسعه دولتي جهت هماهنگي ميان تلاش هاي صورت گرفته از طرف حوزه هاي علمي، مهندسي و فناوري) عبارتست از:

• توسعه علمي و تحقيقاتي در سطوح اتمي، مولكولي يا ماكرومولكولي، در محدوده اندازه هاي طولي از ۱ تا ۱۰۰ نانومتر.
• ساخت و كاربرد ساختارها، تجهيزات و سيستم هايي كه به علت ابعاد كوچك و يا متوسط خود داراي ويژگي ها و كاركردهاي نوين و منحصر به فردي هستند.
• توانايي كنترل و اداره كردن [مواد و فرآيندها] در ابعاد اتمي

نانوفناوري اشاره به تحقيقات و توسعه صنعتي در سطوح اتمي، مولكولي و ماكرومولكولي دارد. اين تحقيقات با هدف ايجاد و بهره برداري از ساختارها و سيستم هايي صورت مي گيرند كه به واسطه اندازه كوچك خود داراي خواص و كاربردهاي منحصر به فردي باشند.
تفاوت اصلي فناوري نانو با فناوري هاي ديگر در مقياس مواد و ساختارهايي است كه در اين فناوري مورد استفاده قرار مي گيرند. در حقيقت اگر بخواهيم تفاوت اين فناوري را با فناوري هاي ديگر به صورت قابل ارزيابي بيان نماييم، مي توانيم وجود عناصر پايه را به عنوان يك معيار ذكر كنيم. عناصر پايه در حقيقت همان عناصر نانومقياسي هستند كه خواص آنها در حالت نانومقياس با خواص شان در مقياس بزرگتر تفاوت مي كند. به علت توسعه خواص پودرهاي بسيار ريز نظير شيمي سطح، خواص تراكم، مقاومت، خواص نوري و واكنش‏هاي سينيتيكي و همچنين افزايش تقاضا براي پودرهاي ريز در صنايع، خردايش بسيار ريزتر در بسياري از رشته‏ها مانند كاني‏ها، مواد سراميكي، رنگدانه‏ها، محصولات شيميايي،ميكروارگانيسم‏ها ، داروشناسي و كاغذسازي استفاده مي‏شود. به عنوان مثال، پودر سنگ آهك به عنوان پركننده در پلاستيك‏ها جهت بهبود مقاومت در برابر گرما، سختي، استحكام رنگ و پايداري مواد به كار گرفته مي‏شود.
اين ماده همچنين در كاغذسازي به عنوان پوشش و پركننده جهت توليد كاغذهاي روشن با مقاومت مناسب در برابر زردي و كهنگي و همچنين جهت سنگ آهك قابليت چاپ، پذيرش جوهر و صافي و همواري كاغذ كاربرد فراواني دارد. لذا خردايش بسيار ريز پودر سنگ آهك، به شكل وسيعي در نقاشي، رنگدانه‏ها، مواد غذايي، پلاستيك‏ها و صنايع داروشناسي، به عنوان مواد پركننده كاربرد دارد.

تاريخچه فناوري نانو
در طول تاريخ بشر از زمان يونان باستان، مردم و به خصوص دانشمندان آن دوره بر اين باور بودند كه مواد را مي توان آنقدر به اجزاي كوچك تقسيم كرد تا به ذراتي رسيد كه خردناشدني هستند و اين ذرات بنيان مواد را تشكيل مي دهند، شايد بتوان دموكريتوس فيلسوف يوناني را پدر فناوري و علوم نانو دانست چرا که در حدود ۴۰۰ سال قبل از ميلاد مسيح او اولين كسي بود كه واژه اتم را كه به معني تقسيم نشدني در زبان يوناني است براي توصيف ذرات سازنده مواد به كار برد.
با تحقيقات و آزمايش هاي بسيار، دانشمندان تاکنون ۱۰۸ نوع اتم و تعداد زيادي ايزوتوپ كشف كرده اند. آنها همچنين پي برده اند كه اتم ها از ذرات كوچكتري مانند كوارك ها و لپتون ها تشكيل شده اند. با اين حال اين كشف ها در تاريخ پيدايش اين فناوري پيچيده زياد مهم نيست.
نقطه شروع و توسعه اوليه فناوري نانو به طور دقيق مشخص نيست. شايد بتوان گفت كه اولين نانوتكنولوژيست ها شيشه گران قرون وسطايي بوده اند كه از قالب هاي قديمي براي شكل دادن شيشه هايشان استفاده مي كرده اند. البته اين شيشه گران نمي دانستند كه چرا با اضافه كردن طلا به شيشه رنگ آن تغيير مي كند. در آن زمان براي ساخت شيشه هاي كليساهاي قرون وسطايي از ذرات نانومتري طلا استفاده مي شده است و با اين كار شيشه هاي رنگي بسيار جذابي به دست مي آمده است. اين قبيل شيشه ها هم اكنون در بين شيشه هاي بسيار قديمي يافت مي شوند. رنگ به وجودآمده در اين شيشه ها برپايه اين حقيقت استوار است كه مواد با ابعاد نانو داراي همان خواص مواد با ابعاد ميكرو نمي باشند.
در واقع يافتن مثال هايي براي استفاده از نانو ذرات فلزي چندان سخت نيست. رنگدانه هاي تزييني جام مشهور ليکرگوس در روم باستان (قرن چهارم بعد از ميلاد) نمونه اي از آنهاست.
اين جام هنوز در موزه بريتانيا قرار دارد و بسته به جهت نور تابيده به آن رنگ هاي متفاوتي دارد. نور انعکاس يافته از آن سبز است ولي اگر نوري از درون آن بتابد، به رنگ قرمز ديده مي شود. آناليز اين شيشه حکايت از وجود مقادير بسيار اندکي از بلورهاي فلزي ريز۷۰۰ (nm) دارد، که حاوي نقره و طلا با نسبت مولي تقريبا ۱۴ به يك است حضور اين نانوبلورها باعث رنگ ويژه جام ليکرگوس گشته است.
در سال۱۹۵۹ ريچارد فاينمن مقاله اي را درباره قابليت هاي فناوري نانو در آينده منتشر ساخت. باوجود موقعيت هايي كه توسط بسياري تا آن زمان كسب شده بود، ريچارد. پي. فاينمن را به عنوان پايه گذار اين علم مي شناسند. فاينمن كه بعدها جايزه نوبل را در فيزيك دريافت كرد در آن سال در يک مهماني شام كه توسط انجمن فيزيک آمريكا برگزار شده بود، سخنراني كرد و ايده فناوري نانو را براي عموم مردم آشكار ساخت. عنوان سخنراني وي «فضاي زيادي در سطوح پايين وجود دارد» بود. سخنراني او شامل اين مطلب بود كه مي توان تمام دايره المعارف بريتانيكا را بر روي يك سنجاق نگارش كرد. يعني ابعاد آن به اندازه۲۵۰۰۰/۱ابعاد واقعيش كوچك مي شود. او همچنين از دوتايي كردن اتم ها براي كاهش ابعاد كامپيوترها سخن گفت (در آن زمان ابعاد كامپيوترها بسيار بزرگتر از ابعاد كنوني بودند اما او احتمال مي داد كه ابعاد آنها را بتوان حتي از ابعاد كامپيوترهاي كنوني نيز كوچكتر كرد. او همچنين در آن سخنراني توسعه بيشتر فناوري نانو را پيش بيني كرد.

كاربرد فناوري نانو
فناوري نانو به سه زير شاخه بالا به پايين، پايين به بالا (روش هاي ساخت) و نانو محاسبات (روش هاي مدل سازي و شبيه سازي) تقسيم بندي مي شوند كه هر كدام از اين روش ها نيز به شاخه هاي گوناگون تقسيم مي شوند .
كاهش اندازه ميكرو ساختاري مواد موجود مي تواند تاثيرات بزرگي را به وجود آورد. مثلاً همان طور كه اندازه دانه يا كريستال در يك فلز به سمت نانو مقياس حركت مي كند، نسبت اتم هاي موجود بر روي مرزهاي دانه هاي اين جسم جامد افزايش پيدا مي كند و آنها رفتاري كاملاً متفاوت از اتم هايي كه روي مرز نيستند بروز مي دهند. رفتار آنها شروع به تحت تاثير قرار دادن رفتار ماده مي كنند و در نتيجه در فلزات، افزايش استحكام، سختي، مقاومت الكتريكي، ظرفيت حرارتي ويژه، بهبود انبساط حرارتي و خواص مغناطيسي و كاهش رسانايي حرارتي ديده مي شود.
در اختلاط شديد از انواع همزن هاي دور بالا، همگن سازها، آسياب هاي كلوييدي و غيره مي توان براي تهيه قطرات ريز يك مايع در مايع ديگر (نانو كپسول ها) سود جست. البته عوامل فعال سطحي (خودآرايي) نقش كليدي در ايجاد و پايداري اين نانو امولسيون ها دارد.
در روش استفاده از آسياب گلوله اي با آسيا و يا پودر كردن مي توان براي ايجاد نانو ذرات استفاده كرد. خواص نانو ذرات حاصل تحت تاثير نوع ماده آسياكننده، زمان آسيا و محيط اتمسفري آن قرار مي گيرد. از اين روش مي توان براي توليد نان ذراتي از مواد استفاده كرد كه با روش هاي ديگر به آساني توليد نمي شوند. البته آلودگي حاصل از مواد محيط آسياب كننده هم مي تواند مشكل ساز باشد.
نانو ذرات در حال حاضر از طيف وسيعي از مواد ساخته مي شوند. معمول ترين آنها نانو ذرات سراميكي بوده كه به بخش سراميك هاي اكسيد فلزي (نظير اكسيدهاي تيتانيوم، روي، آلومينيوم و آهن و نانو ذرات سيليكاتي (عموماً به شكل ذرات نانو مقياسي رس) تقسيم مي شود. طبق تعريف حداقل بايد يكي از ابعاد آنها كمتر از ۱۰۰ نانومتر باشد. نانو ذرات سراميكي فلزي يا اكسيد فلزي معمولاً اندازه يكساني از دو يا سه نانو متر تا ۱۰۰ نانو متر – در هر سه بعد دارند شايد شما انتظار داريد كه چنين ذرات كوچكي در هوا معلق بمانند اما در واقع آنها به وسيله نيروهاي الكترواستاتيك به يكديگر چسبيده و به شكل پودر بسيار ريزي رسوب مي كنند. كاربردهاي بازارپسند اين نانو مواد بسيار زياد است.
خردايش يك فرآيند منحصر به فردي است كه در محدوده وسيعي از كابردهاي صنعتي جهت توليد ذرات ريز كاربرد دارد اما بسيار مشكل است كه توسط خردايش، ذرات را به سايز بسيار ريز تبديل كنيم و علاوه بر اين، خردايش بسيار ريز به علت ظرفيت پايين آسيا و مصرف انرژي بالا، بسيار گران است.
بنابراين افزايش در كارآيي خردايش، تاثير مفيد اساسي بر روي مصرف انرژي خردايش و هزينه خواهد داشت. براي رسيدن به اين هدف، انتخاب آسياي مناسب و عمليات در شرايط بهينه آسيا كردن لازم و ضروري به نظر مي‏رسد. در اين جهت از آسيای سانتريفيوژ استفاده می شود كه، يك آسياي با قدرت بالا بوده و مي‏تواند جهت خردايش بسيار ريز مواد مورد استفاده قرار گيرد.
اين آسيا با به كارگيري نيروهاي سانتريفيوژ توليد شده توسط دوران محور لوله آسيا در يك چرخه فعاليت مي‏كند.
همچنين در فناوري نانو ميتوان توسط فرآيند شيمی مکانيکی ترکيبات اكسي فلورايد لانتانيوم (Loaf) را در حد سايز بسيار ريز نانو به دست آورد. اكسي فلورايد لانتانيوم مي تواند يك فعال كننده، ماده ميزبان فسفر، كاتاليزور براي جفت شدن اكسايشي متان و يا اكسايش هيدروژن زدايي متان باشد. اين ماده توسط دو روش مهم تركيب مي شود. اولين شيوه، فرآيند تركيبي حالت جامد تحت فشار و حرارت بالا بوده و فعل و انفعالات مستقيمي را در بين مواد موجب مي شود و ديگري فرآيند electro_winning است كه جهت آماده سازي به يك محلول آبدار و يا يك نمك گداخته نياز دارد. در اين روش هاي تركيبي، از فلورايد لانتانيوم يا آمونيوم فلورايد به عنوان يك منبع فلورايد مورد استفاده قرار مي گيرد كه طبعاً داراي هزينه بالايي نيز است.
روش جايگزين ديگر جهت تركيب مواد كاربردي بدون استفاده از گرما مي باشد. در اين روش تنها از يك دستگاه خردايش با قدرت بالا نظير آسياي Planetary استفاده مي شود، به طوري كه در اين روش مسائل آلودگي هاي زيست محيطي به حداقل رسيده و دليل آن عدم وجود مواد مضري چون فلوئورين در گازهاي خروجي آن است. جهت جلوگيري از وجود ناخالصي هاي ناشي از پوشش گلوله هاي مورد استفاده در آسيا در زمان خردايش، از گلوله هاي از جنس زيركنيوم استفاده مي شود كه در مقابل سائيدگي مقاوم است .
مضرات نانو
هر چند كه گفته مى شود نانوفناورى قابليت توليد و كاربرد فناورى هاى تميزتر را دارا است؛ اما در كاربرد نانومواد يا ريزمواد بايد احتياط لازم را به عمل آورد. مطالعات نشان مى دهد افرادى كه در معرض انتشار نانومواد قرار دارند ممكن است به عارضه هايى دچار شوند و همچنين تخليه نانوذرات به آب نيز سبب آلودگى هاى سمى زيست محيطى مى شود. در اين نوشتار جهت آشنايى بيشتر خوانندگان گرامى با ساير جنبه هاى علم و فناورى رو به رشد نانو يكى از كامل ترين و جديدترين مطالعاتى كه در زمينه خطرات نانوذرات انجام شده و هم اكنون در مجله Journal of Cleaner Production زير چاپ است؛ به صورت خلاصه ترجمه و ارائه شده است.
ويژگى بارز نانوفناورى استفاده آن از ذرات بسيار كوچكى است كه حداقل يكى از ابعاد آنها كمتر از ۱۰۰ نانومتر باشد. گفته شده است كه نانوفناورى مى تواند مواد زائد و آلودگى ها را از محيط حذف كند حتى مى تواند به طور فزاينده اى از مصرف و هدر رفتن منابع جلوگيرى كند كه اين خود مى تواند سبب شود قيمت تمام شده بسيارى از محصولات و فرآيندها كاهش يابد. از سوى ديگر نانوفناورى اين قابليت را دارد كه با فراهم آوردن امكان انتخاب گرى بالا در واكنش هاى شيميايى، بهره ورى در مصرف انرژى و كاهش توليد مواد زائد را موجب شود. با اين وجود مطالعات نشان مى دهد كه اين فناورى نوظهور آنچنان كه گفته مى شود بى خطر نيست. اصولاً ما با سه دسته نانومواد سروكار داريم. دسته اول كه مهم ترين و قديمى ترين آنها كربن سياه يا كربن بلاك است كه در ساختن لاستيك و نيز در صنايع چاپ به كار مى رود. كاربردهاى جديد اين نانوماده در صنايع ديگرى چون صنايع پوششى، نساجى، سراميك، شيشه و… گزارش شده است. تنها افرادى كه در اين صنايع كار مى كنند مى توانند در معرض اين دسته از نانومواد قرار بگيرند. دسته دوم شامل نانوذراتى است كه در مواد دارويى و آرايشى بهداشتى به كار مى روند كه بالنسبه عموم افراد ممكن است از آنها استفاده كنند. دسته سوم نانوذراتى هستند كه به صورت ناخواسته به عنوان محصول فرعى بعضى از فرآيندها- مانند سوختن سوخت هاى ديزلى، گداختن فلزات و حرارت دادن پليمرها توليد مى شوند، كه به اين دسته نانوذرات غيرتوليدى نيز گفته مى شود. امروزه بيشتر نانوذرات توليدى از اكسيدهاى فلزى، سيليكون و كربن ساخته مى شوند. بيشتر نانوذرات دارو رسان از چربى ها و ساختارهايى با پايه پلى اتيلن گليكول ساخته شده اند.

  •  پورتال خبری سلامتی و زیبایی و موفقیت



نظرات مسدود است